This is an oldie but goodie from Daniel Willingham: Inflexible Knowledge: The First Step to Expertise AFT: Publications: American Educator: Winter 2002: Ask the Cognitive Scientist.
What Does This Suggest for Teachers?
1. Use examples: The fact that students seem to get stuck on examples does not mean that teachers should refrain from providing examples. Certainly, examples help students understand the abstract concepts and some researchers (e.g., Gick & Holyoak, 1983; Gentner et al., 1993) believe that by providing multiple examples, one encourages students to compare the examples and to thereby consider what they have in common; what they have in common, of course, is the deep structure we would like students to learn. Thus, it is probably helpful to tell them not just about Pavlov’s dog, but about a number of wide-ranging examples.
2. Make a distinction between rote and inflexible knowledge: This might be the most important point. Rote knowledge is meaningless. But inflexible knowledge is a natural consequence of learning. We should neither despair when it appears, nor take drastic measures to eliminate it when its elimination could cause collateral damage to our students (i.e., diminished factual knowledge).
3. Appreciate the importance of students’ growing knowledge, even if it’s inflexible: Don’t be reluctant to build students’ factual knowledge base. Some facts end up in memory without any meaning, and other facts have meanings that are quite inflexible, but that doesn’t mean that teachers should minimize the teaching of facts in the curriculum. "Fact" is not synonymous with rote knowledge or with inflexible knowledge. Knowing more facts makes many cognitive functions (e.g., comprehension, problem solving) operate more efficiently. If we minimize the learning of facts out of fear that they will be absorbed as rote knowledge, we are truly throwing the baby out with the bath water.
4. Remember that inflexible knowledge is a natural step on the way to the deeper knowledge that we want our students to have: Frustration that students’ knowledge is inflexible is a bit like frustration that a child can add but can’t do long division. It’s not that this child knows nothing; rather, he doesn’t know everything we want him to know yet. But the knowledge he does have is the natural step on the road to deeper knowledge. What turns the inflexible knowledge of a beginning student into the flexible knowledge of an expert seems to be a lot more knowledge, more examples, and more practice.
Thanks for this. It's very timely for our family and where my son is in his education.
Posted by: Squillo | Saturday, July 11, 2009 at 07:12 AM
Thanks for the reminder, Liz. Dan got it right on this one.
Posted by: John Wills Lloyd | Monday, July 13, 2009 at 07:39 AM